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Abstract— In this paper, object and place recognition are 

considered as the same problem with two applications in 

robotics: recognition of objects for robot manipulation and 

recognition of places for mobile robot localization. The 

approaches which use 3D point clouds obtained by 3D sensors as 

input are discussed. The paper focuses on feature-based 

recognition methods which are suitable for robotic applications 

since they provide a precise pose of either an object of interest or 

a mobile robot in its environment. Several state-of-the-art object 

and place recognition approaches are reviewed. An indoor place 

recognition system designed by the authors is presented as an 

example. 
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I.  INTRODUCTION 

In great majority of the current practical robotic 
applications, robots perform a finite number of programmed 
motions along predefined trajectories in highly structured 
environments. At the same time, extensive research has been 
conducted in the field of robot perception, which is the key to 
more intelligent behavior of future robots and significant 
expansion of their field of application.  

Recognition of objects of interest is one of the basic 
abilities an intelligent robot should have. Without this ability, 
the working environment of the robot must be organized in 
such a way that the objects the robot manipulates with are 
positioned accurately in predefined locations. This requirement 
is usually met by additional mechanical equipment and sensors, 
which significantly complicates the robot's application.  

Environment perception is also a vital property of mobile 
robots. Mobile robots are of special interest in the robotics 
research community because their mobility allows them to 
expand their operating space to entire buildings or production 
floors. In order to exploit this ability to solve tasks which 
include moving from its current position to a given goal 
position, a mobile robot must be capable of localizing itself in a 
previously built map of its operating environment. Several 
variants of mobile robot localization problem are considered in 
the literature, from motion estimation[5] and local pose 
tracking[6][31] to global localization[7], loop closing[9] and 
kidnapped robot problem[8]. The last three problems are 
related to the place recognition problem, i. e. the problem of 

identifying the current robot location in a map without any 
prior knowledge about its previous location or motion. In this 
context, the term place is used to denote a particular location in 
the considered environment. 

If a static part of an environment, e. g. floor, walls, door 
and ceiling of a room, is regarded as a rigid object, then the 
place recognition problem can be considered as a special case 
of the object recognition problem. Therefore, the same 
methodology can be used for both object and place recognition. 
In both cases, the applied recognition methods must be robust 
to changing viewpoint, varying lighting conditions as well as 
occlusion.  

Most of object and place recognition approaches can be 
classified in two groups: appearance based methods[1][2] and 
the methods based on feature registration[3][4][10][11][15] 
[23][24][25][28]. The methods based on feature registration are 
more interesting for robotic applications since they provide 
accurate object pose.  

This paper considers object and place recognition 
approaches which use 3D point clouds obtained by a 3D sensor 
as input. In most of the research reviewed in this paper,  
RGB-D cameras like Microsoft Kinect or PrimeSense sensor 
are used. A RGB-D image consists of two images, a 'standard' 
RGB image and a depth image. The depth image assigns to 
each image pixel depth information from which 3D position of 
the point represented by this pixel can be computed. Hence, 
RGB-D image can be regarded as a colored 3D point cloud.  

The paper is organized as follows. The general object 
recognition approach is defined in Section II and a commonly 
applied strategy for solving this problem is described. This 
strategy is based on registration of geometric features extracted 
form point clouds. Several approaches designed primarily for 
recognizing relatively small movable objects based on feature 
registration are described in Section III. Two methods for 
recognizing places in indoor environments which use the same 
strategy are described in Section IV. The paper is concluded in 
Section V. 

II. RECOGNITION BASED ON FEATURE REGISTRATION 

We begin this section by defining the problem of 
recognizing objects in 3D point clouds using a formulation 

similar to the one used in [10]. LetS be a set of 3D points i.e. a 



point cloud acquired by a 3D sensor, referred to in the 

following as a scene, and let  = {M1, M2, ..., Mn} be a set of 

models of objects to be recognized in that point cloud. Each 
model Mi represents a point cloud obtained by scanning an 
object of interest by a 3D sensor from a particular viewpoint or 
by fusion of point clouds acquired from multiple views. Each 
model Mi is assigned a reference frame in which the point 
coordinates are represented. Analogously, the points in the set 
S are represented in the sensor reference frame. The considered 
problem is to determine a correct interpretation of the scene S, 

i. e. the set of hypotheses  = {H1, H2, …, Hr}, where each Hi 

is a hypothesis that an object from the set  appears in the 

scene S in a particular pose.  A hypothesis can be represented 

by a pair  ,i i iH o T , where oi is the object index and Ti is a 

homogenous transformation matrix describing the pose of the 
object relative to the sensor reference frame.  

In this paper, approaches for object and place recognition in 
colored 3D point clouds, which are based on registration of 
features of various types, are considered. The basic pipeline of 
these approaches which is executed in the online recognition 
phase consists of the following steps: 

 feature detection; 

 generating hypotheses from feature matches; 

 hypothesis evaluation. 

Features which are used in the considered recognition 
approaches represent geometric elements such as a 3D point, a 
pair of oriented 3D points, a line or a planar surface segment. 
Each feature is assigned a local descriptor representing a 
vector of values which describe the local neighborhood of the 
feature.  

In the hypothesis generation stage, the features detected in 
the scene S are matched to the features of the same type 
extracted from all models

iM  . Feature matching is 

performed according to the local descriptors assigned to the 
features. If the descriptor of a scene feature is sufficiently 
similar to a descriptor of a model feature, according to a certain 
similarity measure, the parameters of these two features 
defining their pose relative to the respective reference frames 
are used to compute the pose of a model reference frame 
relative to the sensor reference frame. If a single feature match 
does not contain information sufficient for estimating full 
6DoF object pose, groups of features are matched, where 
geometric relations between the features in a group are used in 
the matching process together with the local descriptors. The 
object pose computed from a feature match or by matching two 
groups of features represents a hypothesis that this particular 
object is present in the scene in the computed pose.  

Since many features are usually detected in point clouds, a 
large number of hypotheses are generated and only some of 
them are correct. Therefore, a suitable criterion must be used to 
decide which of the generated hypotheses can be accepted as 
correct and which should be rejected. This final step is referred 
to herein as hypothesis evaluation. 

III.   OBJECT RECOGNITION  

In this section several state-of-the-art object recognition 
approaches based on the general strategy described in Section 
II are reviewed. The approaches differ in selection of features, 
method applied to generate hypotheses and the criterion used 
for hypothesis evaluation. 

A. Hypothesis Generation 

The method proposed in [11] can be used to recognize 
objects in 3D point clouds in cluttered scenes. The method is 
tested by recognizing a set of objects in 3D point clouds 
obtained by a laser range finder from a single viewpoint. The 
objects to be recognized are modeled by high resolution 3D 
point clouds covering the entire object surface. The features 
used in this approach are pairs of oriented points. This type of 
feature is originally proposed in [12]. An oriented point is 
obtained by assigning to a 3D point the unit vector 
perpendicular to the local surface in the close neighborhood of 
that point. Each oriented 3D point is defined by five 
parameters: three coordinates of the point and two parameters 
defining the orientation of the assigned unit vector. A pair of 
oriented 3D points can, therefore, be described by 10 
parameters. Six of these 10 parameters define the 6DoF pose of 
this feature relative to the point cloud reference frame, while 
the remaining four parameters are used to form a local 
descriptor of the feature. In order to reduce the number of 
hypotheses, only the pairs of oriented points with a user 
defined distance are used in [11]. Since the point distance is 
constant, it is not used in the local descriptor as proposed in 
[12] and therefore the local descriptor is a three element vector. 
Hypotheses are generated using a RANSAC[13]-based 
approach. In order to achieve fast feature matching, a hash 

table is created from all models in . The entries in the hash 

table are created from the features extracted from the models. 
Each entry represents the information about the model and the 
pose of the feature relative to the model reference frame. The 
address of an entry is computed from the feature's local 
descriptor. In the online recognition phase, for each feature 
extracted from S, the feature with a similar local descriptor is 
fetched from the hash table. In order to compute surface 
normals needed to obtain oriented points efficiently, a fast 
identification of the neighboring points is critical. This is 
achieved by representing S by an octree[14].  

In the approach presented in [15], 3D points at uniformly 
sampled positions on the surfaces of models and the scene are 
used as features and each of these points is assigned a SHOT 
local descriptor proposed in [16]. Fast descriptor matching is 
accomplished by indexing implemented using FLANN [17]. 
Hypotheses are generated by a correspondence grouping 
algorithm. This algorithm starts from a seed correspondence,  
i. e. a pair of features with sufficiently similar local descriptors, 
and for each such correspondence it forms a group of feature 
correspondences which satisfy a particular geometric 

constraint, described in the following. Let  ,i j
p p  be the seed 

correspondence, where 
ip  is a scene feature point and j

p  is the 

corresponding model feature point. Another correspondence 

 ,k l
p p  is added to the group if  



 
i k j l     p p p p , 

where  is a user defined tolerance. For each correspondence 
group, a RANSAC-based algorithm is applied to all the 
correspondences in the group resulting in a 6DoF pose 
hypothesis. The pose obtained by the RANSAC algorithm are 
then refined using ICP procedure [18]. A sample result of the 
described method is shown in Fig. 1, where the hypothesis with 
the greatest number of feature correspondences is displayed. 
However, this simple hypothesis evaluation criterion is not 
suitable for cluttered scenes. A more advanced hypothesis 
evaluation method is proposed in [15]. This method is 
reviewed in Section III.B. 

The method presented in [15] is augmented in [10] by two 
additional hypothesis generation pipelines, one which uses 
point features detected in the grayscale image with assigned 
SIFT[19] descriptors and the other which uses a semi-global 
3D descriptor representing an extension of the OUR-CVFH 
approach [20] based on the color, shape and object size cues. 
Point features extracted from the grayscale image are projected 
onto the depth image in order to obtain 3D points coordinates.  

The method presented in [10] is adapted in [21] for object 
recognition from multiple views. 

The approach proposed in [22] assumes that the objects of 
interest lie on a flat surface which is detected using RANSAC 
and removed from S. The remaining points in S are then 

clustered and each cluster is compared to the models from  

using global hue descriptors. For each matching pair of objects 
pose hypotheses are generated using SIFT features and 
RANSAC. 

The approach proposed in [24] uses Color Point Pair 
Features, obtained by augmenting the descriptor proposed in 
[12] with color information. Hypotheses are generated by 
evidence accumulation followed by pose clustering. The 
hypotheses are sorted according to the number of accumulated 
votes and a fixed number of the highest ranked hypotheses are 

returned as the final result.  

B. Hypothesis Evaluation 

In general, the result of the hypothesis generation stage is a 

hypotheses set  = {H1, H2, …, Hr}. Some of those hypotheses 

are correct and some are not. Selection of correct hypotheses 
according to a particular criterion is performed in the 
hypothesis evaluation stage. 

The approach presented in [22] detects objects as clusters 
of 3D points remaining after the supporting plane is removed 
from S. This approach generates hypotheses separately for each 
cluster and selects a single most probable hypothesis for each 
cluster. The hypotheses are evaluated by projecting the SIFT 
features detected in the scene onto the corresponding model 
and searching for the corresponding feature in local 
neighborhood. The hypothesis are ranked according to the 
number of matched SIFT features. The method presented in 
[22] is improved in [23] by including additional cues in the 
hypothesis evaluation stage: color, shape context features and 
SIFT features. The scores of the said cues are blended feature-
weighted linear stacking approach. Furthermore, standard 
ranking support vector machine is applied to determine which 
object corresponds to each cluster from S.  

In the approach proposed in [11] hypothesis evaluation is 
performed in two stages. In the first stage, the model is 
transformed in the sensor reference frame by the 
transformation Ti of the evaluated hypothesis Hi. The 
hypothesis is rejected if the percentage of model points which 
are sufficiently close to scene points is below a user defined 
threshold or the percentage of model points which occlude 
scene points exceeds a user defined threshold. In the second 
stage, for each hypothesis, the number of points from S which 
are sufficiently close to the transformed model points is 
determined, referred to in the following as the hypothesis 
support. Each hypothesis which conflicts a hypothesis with a 
larger support is rejected. Two hypotheses are conflicting if the 
intersection of their supports is not an empty set. 

In the approach presented in [15], each hypothesis Hi is 

assigned a boolean variable  0,1ix     which has a value of 

1 if the hypothesis is correct and 0 if the hypothesis is false. 
Therefore, a possible solution can be represented by a sequence 

 = {x1, x2, …, xr}. Hypotheses Hi for which xi = 1 are referred 

to in the following as active hypotheses. In the hypothesis 

evaluation stage, the solution space r is searched for a 

solution which minimizes a cost function using a simulated 
annealing approach. The cost function is based on several cues. 
The first cue is the number of scene points which are explained 
by any hypothesis, where the term explained has the following 
meaning. A scene point is explained by a hypothesis Hi if there 

is a point belonging to the model 
ioM  which is, after being 

transformed by Ti, sufficiently close to the considered scene 
point. In order for a scene point to be considered as explained, 
in [15] is also required that the orientation of the scene point is 
sufficiently similar to the orientation of the corresponding 
model point. Each scene point explained by an active 
hypothesis contributes to the cost function by a value computed 
from the distance to the corresponding model point and the 

 
Figure 1. Object recognition in a colored 3D point cloud. Top row shows 

the RGB image of an object model (left) and a scene (right). Bottom row 

shows the hypothesis with the greatest number of feature matches, where 
green lines connect model features with the corresponding scene features.  

 



similarity between the orientations of these two points. This 
value is negative for close points with similar orientation, 
which means that each explained point decreases the cost 
function. The second cue is the number of visible model points 
of every active hypothesis which do not explain any scene 
point. This number increases the cost function. The third cue is 
the number of conflicting hypotheses for each scene point, i. e. 
the number of active hypotheses Hi which explain the same 
scene point. This number also increases the cost function. The 
fourth cue is the number of unexplained scene points that are 
likely to belong to the same surface as nearby explained points. 
In order to compute this number, smooth clusters of points in S 
are identified. Each cluster is assumed to belong to the same 
object. Hence, all unexplained scene points belonging to a 
cluster which also contains explained scene points increase the 
cost function. 

In [10] the hypothesis evaluation method proposed in [15] 
is extended with two additional cues. The first is a color cue, 
which measures the similarity of the color of scene point and 
the corresponding model points. The second cue penalizes 
hypotheses according to which objects are partially positioned 
below the table. 

IV. PLACE RECOGNITION 

Most place recognition methods are based on bag-of-words 
(BoW) technique[32]. In addition to recognizing places in 
standard camera images the BoW approach is also used for 
place recognition based on point clouds[33]. Nevertheless, this 
approach determines which model image is most similar to the 
currently acquired image, but it does not provide accurate 
information about the current camera pose in the map. 

In this section, place recognition approaches based on 
feature registration technique described in Section II are 
considered. Point features with local descriptors encoding 
information about the local shape of the object surface in the 
close vicinity of the corresponding point features, such as 
SHOT, are suitable for recognition of small objects. However, 
stable landmarks which can be used for place recognition in 
indoor environments are mostly planar surfaces such as floor, 
ceiling, walls, or large furniture whose position in the 
environment is fixed. Therefore, a reasonable choice of 
features to be used for indoor place recognition is planar 
surface segments. If the place recognition problem is regarded 
in analogy to the general object recognition problem discussed 
in Section II, then the environment map can be represented by 

a set  = {M1, M2, ..., Mn}, where Mi are local models 

representing particular locations in the map, which are referred 
to in this paper as places. 

A place recognition approach which uses planar surface 
segments as features is proposed in [25]. The environment map 
used in [25] represents a set of planar surface segments 
described by the parameters defining their position with respect 
to a common reference frame. The planar surface segments are 
extracted from a depth image acquired by a RGB-D camera 
using a region growing technique proposed in [26]. The sensor 
data, according to which the current camera location in the map 
is identified, is not a single RGB-D image, but a sequence of 
images acquired while the camera is moving along a path in the 

considered environment. This can be regarded as fusion of a 
sequence of point clouds into a point cloud which corresponds 
to the notion of scene S as it was defined in Section II. Since 
matching of a planar surface segment extracted from a scene to 
a planar surface segment in a map does not provide sufficient 
information for determining the 6DoF camera pose relative to 
the map, groups of planar surface segments must be matched in 
order to compute the camera pose. Both the map and the scene 
are represented by a graph, whose nodes are surface segments, 
which are connected by neighborhood relations. In the 
hypothesis generation stage subgraphs are formed consisting of 
one surface segment, representing the reference node of a 
subgraph, and all segments connected to this node. Hypotheses 
are generated by matching subgraphs of the scene with 
subgraphs of the map using the interpretation tree approach 
[27]. The result of matching two subgraphs is a set surface 
segment correspondences. From these correspondences 6DoF 
camera pose is computed by minimizing a cost function which 
measures the adjustment error of each matched plane pair. This 
pose computation is formulated as a least squares problem 
which is solved using Gauss-Newton optimization. A subgraph 
match is accepted if the parameters of the scene surface 
segments transformed by the estimated camera pose to the 
model reference frame are sufficiently similar to the parameters 
of the corresponding model surface segments.  

Another place recognition approach based on planar surface 
segments is proposed in [28]. In addition to planar surface 
segments, straight object edges are also used as features. Planar 
surface segments are extracted form an organized point cloud, 
i. e. a depth image, using the method based on recursive 
Delaunay triangulation [29] to create a triangular mesh from 
the point cloud and the hierarchical surface merging approach 
proposed in [30] to merge triangles into planar segments.   

The hypothesis generation used in [28] is also based on 
building an interpretation tree. However, the interpretation tree 
is built differently. First, the scene and model surface segments 
are sorted according to information content factor (ICF) [31], 
representing a measure of useful information for camera pose 
estimation provided by a surface segment. A queue of surface 
segment pairs is created, where the first element of the pair is a 
scene surface segment and the second element is a model 
surface segment. This queue is sorted according to the ICFs of 
the surface segments forming the pairs. Finally, the 
interpretation tree is constructed recursively by appending new 
nodes corresponding to surface segment pairs. The pairs are 
taken from the queue in the sorting order starting with the pair 
of surface segments having the highest ICFs. This strategy is 
aimed at generating a correct hypothesis in the early stage of 
interpretation tree construction, thereby reducing the 
computation time. Each path connecting a leaf of the 
interpretation tree to the root of the tree represents a 5DoF pose 
hypothesis, defining the orientation and two translational DoFs 
of the camera pose. This 5DoF pose is computed from the 
sequence of surface segment correspondences along the path 
from the leaf to the root of the interpretation tree using EKF. 
The remaining translational DoF is estimated by an evidence 
accumulation approach described in [28]. 

While the method described in [25] performs fusion of 
point clouds acquired during camera motion, the method 



presented in [28] uses a single depth image as a scene S. Each 
local model 

iM   represents likewise a single depth image.  

In [28], a probabilistic approach is used for hypothesis 
evaluation. The proposed method is based on the assumption 
that the prior probability of accidental appearance of planar 
surfaces in any particular geometric arrangement is rather low. 
Therefore, if a set of planar surfaces detected in the scene are in 
the same geometric arrangement as a set of planar surfaces in 
the environment model, the probability of the camera being in 
a particular pose which aligns the scene feature set to the model 
feature set is high. Moreover, the more scene surfaces are 
aligned with model surfaces the higher this probability is. 
Assuming that exactly one of the hypotheses from a considered 

hypothesis set  is correct and that the prior probability of all 

hypotheses is equal, the probability of a hypothesis Hk can be 
considered proportional to the likelihood p(Z | Hk), where  
Z = {F1, F2, …} denotes the set of planar surface segments Fi 
extracted from S. Assuming that each surface segment 
represents an independent measurement, this likelihood can be 
computed as 

    | |
i

k i k

F Z

p Z H p F H


 , (1) 

where p(Fi | Hk) is probability density function (PDF) of 
detecting a surface segment with particular parameters if the 
hypothesis Hk is correct. Computation of p(Fi | Hk) is 
performed by transforming all surface segments of the local 

model 
ioM using the homogenous transformation matrix Ti, 

and matching the scene surface segments extracted from S to 

the model surface segments extracted from 
ioM . If a scene 

surface segment Fi is matched to a model surface segment jF  , 

then p(Fi | Hk) is computed using the uncertainty model of the 

orientation of the segments Fi and jF  , as explained in [28]. 

The smaller the difference between the parameters of the 
matched surface segments the higher the value p(Fi | Hk). 
Furthermore, since the uncertainty of the orientation is lower 
for larger surface segments, this computation gives higher 

values of p(Fi | Hk) for larger surface segments Fi and jF  . If a 

scene surface segment Fi is not matched to any model surface 
segment, then a prior PDF corresponding to an accidental 
occurrence of a surface segment in the scene with particular 
parameters is used for p(Fi | Hk) in (1). A scene surface 
segment is not considered in the matching process if it 
occludes a model surface segment, because it is assumed that a 
transparent surface cannot be detected by the 3D camera. 
Analogously, a model surface segment is rejected from the 
matching process if it occludes a scene surface segment. This 
approach yields a similar effect as the penalization of the 
model points which occlude scene points in [11] and the 
fourth cue in the hypothesis evaluation approach in [15].  

An example of place recognition achieved by the approach 
proposed in [28] is shown in Fig. 2. The red cones represent 
the camera poses from which the model point clouds are 
acquired, while the blue cones represent the camera poses 
corresponding to correct hypotheses. The results shown in  
Fig. 2 are obtained by an improved version of the method 

described in [28]. The main improvement is that instead of 
using a single depth image as a scene S and to create each local 
model 

iM  , each scene and model point cloud is obtained 

by fusion of a sequence of depth images acquired form a 
particular location for varying pan and tilt angles of the camera.  

V. CONCLUSION 

In this paper, a review of object recognition method based 
on registration of geometric features extracted from 3D point 
clouds is presented. The basic pipeline common to the 
considered methods is explained and different implementations 
of the three steps of this pipeline: feature detection, hypothesis 
generation and hypothesis evaluation, are discussed. Place 
recognition problem is formulated as a special case of the 
general object recognition problem. Two methods which use 
planar surface segments as features are briefly described. A 
sample result obtained by of one of these two methods is 
provided as an illustration of the discussed methodology.  
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