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Abstract— Nowadays, accelerometers are used in a large 

variety of applications. These sensors suffer from various 

types of deterministic and stochastic errors. Deterministic 

errors are caused by manufacturing defects, and include 

bias, scale factor, and misalignment errors. These errors 

can be compensated by calibrating the sensors, during 

which calibration parameters are computed. Previously, 

the authors proposed an evolutionary algorithm-based 

solution for efficient accelerometer calibration, which 

utilizes stationary measurements from several different 

orientations. In this paper, the number of required 

orientations is investigated which is required to achieve 

still precise measurements. The algorithm is tested using 

real measurement data, collected from multiple sensors. 

The obtained results show, that six basic orientations are 

required for efficient calibration of the sensors, but slight 

improvements can be achieved if more orientations are 

applied. 

Keywords— accelerometer; sensor calibration; evolutionary 
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I.  INTRODUCTION 

An accelerometer detects specific force, which is 
proportionate to the acceleration of the sensor in its axis of 
sensitivity. With the developments in Micro-Electro-
Mechanical Systems (MEMS), the availability of small, lower-
cost, medium-performance inertial sensors have opened new 
possibilities for their use. These sensors can be used in a large 
variety of applications, like navigation [1], pattern recognition 
[2], vibration analysis [3-4], vehicle detection and classification 
[5-6], etc. 

Accelerometers suffer from various types of errors that can 
be classified as deterministic or systematic errors and random 
or stochastic errors [7]. The calibration is a process of 
comparing the sensor’s output with the known reference 
information to estimate these error coefficients, which form an 
exact relationship between observed readings and expected 
outputs. Deterministic errors occur due to manufacturing 
defects, and can be calibrated using the fact that the vector 
magnitude should be 1 g when the sensor is not in movement. 
To obtain the linear position, accelerometer measurements 
need to integrated twice. Because of the integration process, 

even very small errors at the output accumulate very rapidly 
and the position error becomes considerably large. 

Calibration can be done with and without additional 
equipment. High-precision equipment can be used in laboratory 
environment to generate known references which can be 
compared with the sensors outputs. Due to the growing usage 
of accelerometers, and unavailability and high cost of 
calibration equipment, in recent years, intensive research was 
done to develop calibration methods which do not require 
additional equipment. 

The computation of the calibration parameters can be done 
online and offline. In case of online calibration, the parameters 
are computed in real-time on the measurement device, while in 
offline algorithms previously collected measurements are used. 

In the literature, various algorithms exist for the calibration 
accelerometer sensors. The known algorithms mainly apply a 
six-position test, where during the measurements the three axes 
of the sensors are aligned to be nearly +1 g and -1 g [7]. 

In [8], a non-iterative algorithm was proposed, which 
focuses on minimal execution time and low memory 
consumption. The method works in two steps: first, the center 
of the ellipsoid is estimated, and then the scale factors are 
computed. The aim of both steps is to form and solve a system 
of linear equations with the same number of equations and 
unknown variables using the least-square method. 

Kalman Filter-based approaches are very popular in the 
field of sensor calibration [9-11]. 

Various optimization techniques were also tested in 
reported works.  In [12], a geometric ellipsoid parameter 
estimation technique was applied, that uses the Levenberg-
Marquardt algorithm (LMA) to perform nonlinear 
optimization. An offline calibration method using the 
Maximum Likelihood Estimation (MLE) was tested in [13]. 
Gao et al. proposed a method based on the Artificial Fish 
Swarm Algorithm (AFSA) for the identification of error 
coefficients [14], whereas Particle Swarm Optimization (PSO) 
was utilized in [1]. 

Previously, an evolutionary algorithm-based offline 
approach was proposed in [15], which applied stationary 
measurements from 80 different orientations for efficient 
accelerometer calibration. The solution does not require any 
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additional high-precision equipment. In this study, the number 
of required orientations is investigated, which is required for 
efficient calibration of the sensors. 

II. SENSOR MODELS 

The deterministic errors that affect the system performance 
are most commonly represented by bias, scale factor, and 
nonorthogonality, whereas the random errors are modeled 
stochastically. Deterministic errors can be calculated during 
sensor calibration and they can be compensated later during 
real-time work. Random errors occur due to random 
fluctuations in the system response and cannot be predicted or 
compensated. In this research, all three deterministic error 
types were investigated. 

A. Standard model 

Bias in the accelerometer output will cause a shift in the 
measured acceleration vector from its real direction.  

𝒃 = [

𝑏𝑥
𝑏𝑦
𝑏𝑧

]  

where bx, by, and bz in the b bias vector are the bias values on 
each axis. 

Scale factors determine the sensor’s sensitivity to the 
intended acceleration at each axis. The matrix consisting the 
scale factors can be represented as: 

𝑺 = [

𝑆𝑥 0 0
0 𝑆𝑦 0

0 0 𝑆𝑧

]  

where Sx, Sy, and Sz are the scale factors for each axis. 

Nonorthogonality between axes is the inaccuracy resulting 
from the imperfection in sensor mounting during its 
manufacturing. Misalignment errors are, however, introduced 
due to nonalignment of sensor’s sensitive axis and the 
mounting platform. 

𝑴 = [

1 𝑚𝑥𝑦 𝑚𝑥𝑧

𝑚𝑦𝑥 1 𝑚𝑦𝑧

𝑚𝑧𝑥 𝑚𝑧𝑦 1
]  

where mxy, mxz, myx, myz, mzx, and mzy in the M matrix are the 
misalignment error coefficients. 

The relation between the measured and the real values can 
be given as: 

[

𝑟𝑥
𝑟𝑦
𝑟𝑧
] = [

1 𝑚𝑥𝑦 𝑚𝑥𝑧

𝑚𝑦𝑥 1 𝑚𝑦𝑧

𝑚𝑧𝑥 𝑚𝑧𝑦 1
] [

𝑆𝑥 0 0
0 𝑆𝑦 0

0 0 𝑆𝑧

] [

𝑜𝑥
𝑜𝑦
𝑜𝑧
] + [

𝑏𝑥
𝑏𝑦
𝑏𝑧

] + [

𝜂𝑥
𝜂𝑦
𝜂𝑧
]

where ox, oy, and oz are the measured sensor outputs, while rx, 
ry, and rz are the real acceleration values on each axis. The 

terms ηx, ηy, and ηz assign the noise values that are generally 
assumed to be white Gaussian. 

 Combining the M and S matrices into one matrix, a 
calibration model utilizing 12 parameters can be given as: 

[

𝑟𝑥
𝑟𝑦
𝑟𝑧
] = [

𝑚𝑥𝑥 𝑚𝑥𝑦 𝑚𝑥𝑧

𝑚𝑦𝑥 𝑚𝑦𝑦 𝑚𝑦𝑧

𝑚𝑧𝑥 𝑚𝑧𝑦 𝑚𝑧𝑧

] [

𝑜𝑥
𝑜𝑦
𝑜𝑧
] + [

𝑏𝑥
𝑏𝑦
𝑏𝑧

] 

B. Simplified model 

A simplified relation, which applies 9 parameters, can be 
given using the model seen in Fig. 1. The misalignment error 
matrix can be given as: 

𝑀 = [

1 0 0
−sin(𝛼𝑧𝑦) cos(𝛼𝑧𝑦) 0

−sin(𝛼𝑦𝑧) −sin(𝛼𝑥𝑧)cos(𝛼𝑦𝑧) cos(𝛼𝑥𝑧) cos(𝛼𝑦𝑧)
]

where αzy, αxz, and αyz are the misalignment angles. 

III. DATA ACQUISITION 

Do to their small size and easy programming, wireless 
sensor motes were used for data acquisition, which are a 
widely-used platform for the implementation of different 
Wireless Sensor Networks (WSNs) [16-18].  

IRIS motes were utilized, which are built-up of from an 
Atmel ATmega 1281L 8-bit microcontroller and an RF231 
IEEE 802.15.4 compatible radio transceiver. The highest data 
throughput of the radio transceiver is 250 kbps, and it has 
outdoor range over 300 m. To perform the measurements, 9 
degree of freedom (9DOF) sensor boards were connected to the 
IRIS motes using the MDA100 prototyping board. The 
connected 9DOF sensor board is made up of an ADXL345 tri-
axial MEMS accelerometer, an ITG3200 tri-axial MEMS 
gyroscope, and an HMC5883L tri-axial magnetoresistive 
technology-based magnetometer. The ADXL345 is a low 
power accelerometer (the current draw is 40 µA in 
measurement mode, and 0.1 µA in sleep mode), which can 
measure up to ±16 g in 13-bit resolution with a highest 
sampling rate of 3.2 kHz. The IRIS mote and the connected 
sensor board can be seen on Fig. 2. 

Fig. 1. Simplified sensor model 
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Fig. 2. The sensor board connected to the IRIS mote 

In the field of WSNs, TinyOS is the most widely used, 
event-driven operating system. An application was developed 
to configure the sensors and cyclically read the measurement 
data via the I2C interface, and to send the data to a so-called 
BaseStation mote via wireless communication. The 
BaseStation mote forwards the received data to a PC, where an 
application stores them to a database. The collected 
measurement data can be later visualized [19], and used in 
offline algorithms. 

Data acquisition was done using three different sensor 
boards, with an applied sampling rate of 125 Hz. Measurement 
data were collected in 80 different orientations, and 200 
measurements were saved for every setup. These orientations 
consist 10 basic orientations, around which measurements were 
done in 8 orientations. The basic orientations were chosen 
where the acceleration values should be nearly +1 g and -1 g in 
the X, Y, and Z axes, while in the remaining 2 basic orientations 
none of the three sensor axes should be 0. 

IV. CALIBRATION ALGORITHM 

The measurement values are first transformed into g-s, 
since the algorithm later uses the fact that the magnitude should 
be 1 g when the sensor is not in movement. 

The calibration parameters in the models are double type 
values, and they form the phenotype for the evolutionary 
algorithm. To accelerate the optimization, a priori knowledge is 
added to the method in the form of parameter ranges. In the 
fitness function, the output vector is computed for each 
measurement vector using the current calibration parameters. 
The magnitudes are then calculated for all measurements using 
(7), and the Mean Squared Error (MSE), as given in (8), is 
calculated based on the differences between the computed 
magnitudes and the expected 1 g acceleration. The goal of the 
optimization is to minimize the MSE value. 

𝑚𝑎𝑔 = √𝑟𝑥
2 + 𝑟𝑦

2 + 𝑟𝑧
2  

𝑚𝑠𝑒 =
1

𝑁
∑ (1 − 𝑚𝑎𝑔𝑖)

2𝑁
𝑖=1   

where N is the number of measurements, and magi is the 
magnitude of the ith measurement. 

V. EXPERIMENTAL RESULTS 

Using the measurement data collected in 80 orientations, 
based on the selection of which to be utilized as training and 
which as validation data, altogether 7 combinations were 
defined. The used orientations in the training data in the seven 
combinations are the next: 

1. X ≈ +1 g, Y ≈ +1 g, Z ≈ +1 g; only one orientation for 
all three basic orientations, 

2. X ≈ +1 g, Y ≈ +1 g, Z ≈ +1 g; all 8 orientations for all 
three basic orientations, 

3. X ≈ -1 g, Y ≈ -1 g, Z ≈ -1 g; only one orientation for all 
three basic orientations, 

4. X ≈ -1 g, Y ≈ -1 g, Z ≈ -1 g; all 8 orientations for all 
three basic orientations, 

5. X ≈ +1 g, Y ≈ +1 g, Z ≈ +1 g, X ≈ -1 g, Y ≈ -1 g, Z ≈ -1 
g; only one orientation for all three basic orientations 

6. X ≈ +1 g, Y ≈ +1 g, Z ≈ +1 g, X ≈ -1 g, Y ≈ -1 g, Z ≈ -1 
g; all 8 orientations for all three basic orientations, 

7. All 80 orientations. 

The validation datasets were constructed utilizing all 
orientations which were not the part of the training data. Using 
the previously described combinations, it can be examined that 
how much can the orientations in the basic orientations 
improve the results. 

The optimization of the calibration parameters was 
performed for all seven combinations, and for all three sensors, 
using the simplified sensor model. 

Table 1 shows the MSE values and the highest differences 
from the 1 g magnitude on training and validation 
measurements for all seven combinations. Since in the last 
combination all orientations were applied in the training 
datasets, no data were used as validation measurements, thus, 
no MSE values and highest difference values are available. The 
results show, that measurements in six basic orientations are 
necessary for efficient calibration of the sensors. The MSE 
values and highest differences show high errors when 
combinations 1-4 were applied. The obtained MSE values on 
training data in combinations 5 and 6 are nearly equal with the 
results achieved with utilizing all orientations during the 
optimization (combination 7). The MSE values on validation 
measurements are slightly higher than on training data, which 
shows that still slight improvements can be achieved if more 
basic orientations are utilized. The highest differences to the 1 
g magnitude level are nearly equal in case of training and 
validation measurements, and are around 25 mg for all three 
sensors, which is the peak-to-peak random noise level. 

VI. CONCLUSION 

In this paper, the number of required orientations were 
investigated for effective accelerometer calibration. A 
previously proposed, evolutionary algorithm-based method was 
applied for the optimization of the calibration parameters 
utilizing a simplified (9 parameter) model. 
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TABLE I.  ACHIEVED MSE VALUES AND HIGHEST DIFFERENCES ON TRAINING AND VALIDATION DATA USING DIFFERENT ORIENTATION COMBINATIONS  

 Defined orientation combinations 

1 2 3 4 5 6 7 

MSE on training data 

Sensor 1 0.000027 0.000023 0.000023 0.000027 0.000024 0.000025 0.000025 

Sensor 2 0.000035 0.000028 0.000026 0.000025 0.000029 0.000028 0.000034 

Sensor 3 0.000024 0.000024 0.000030 0.000026 0.000029 0.000028 0.000032 

MSE on validation data 

Sensor 1 0.010247 0.003710 0.007419 0.015416 0.000025 0.000027 - 

Sensor 2 0.032212 0.002336 0.004026 0.040625 0.000035 0.000046 - 

Sensor 3 0.010865 0.003739 0.005259 0.070210 0.000035 0.000044 - 

Highest difference on 

training data 

Sensor 1 0.01810 0.01922 0.01850 0.02860 0.01880 0.02630 0.02630 

Sensor 2 0.02163 0.02370 0.01904 0.02070 0.02310 0.02480 0.03033 

Sensor 3 0.01644 0.01980 0.02544 0.01990 0.02597 0.0257 0.02562 

Highest difference on 

validation data 

Sensor 1 0.23650 0.11788 0.15663 0.20930 0.02680 0.01890 - 

Sensor 2 0.40630 0.11918 0.12931 0.34709 0.03066 0.03068 - 

Sensor 3 0.23119 0.15852 0.1974 0.36144 0.02672 0.02644 - 

 

The results show, that measurements in six basic 
orientations are at least required for efficient accelerometer 
calibration. The obtained MSE values on training data when 
the six basic orientations are applied are nearly equal with 
the results achieved with utilizing all orientations during the 
optimization. The MSE values on validation measurements 
are slightly higher than on training data when only six 
orientations are utilized, what shows that still slight 
improvements can be achieved if more basic orientations are 
used. The highest differences to the 1 g magnitude level are 
around 25 mg for all three sensors, which is the peak-to-peak 
random noise level. 
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